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Statistical Analysis of Disease Onset and
Lifetime Data from Tumorigenicity
Experiments
By S. W. Lagakos* and Louise M. Ryan*

We present and discuss several methods for analyzing rodent tumorigenicity experiments. Two ap-
proaches are based on the age and tumor status (present/absent) of each animal at the time of death, and
assume either that the tumor type is nonlethal or instantly lethal. Two other approaches avoid such
restrictive assumptions about tumor lethality by requiring additional types of data. One method assumes
that animals are randomly sacrificed at various ages throughout the study. The second approach requires
that each animal which develops the tumor be classified as dying either from the tumor or from other
causes.

Introduction
Rodent tumorigenicity experiments are frequently

used to assess the safety of chemicals, food additives,
pesticides, and other products. Typically, a control
group of rodents is compared with one or more "ex-
posed" groups that are fed the compound of interest
throughout their lifetimes. The substance is deemed
carcinogenic if, loosely speaking, it increases the rate
of development of one or more tumor types.
From a statistical point of view, the analysis of rodent

tumorigenicity experiments poses a number of inter-
esting and challenging problems. One reason for this is
that most tumor types are occult and therefore detect-
able only after the animal has died. The statistical an-

alysis of experiments involving observable or palpable
tumors, such as skin and mammary tumors, is much
simpler and will not be discussed in this paper. Thus,
the quantity of interest, time to tumor onset, is not
directly observed-we know only whether or not the
tumor has developed by the time of death. The problem
is compounded by two other phenomena: first, tumor
types differ in their lethality, with some causing death
shortly after onset and others never or rarely causing
death. This means that the time from onset to death
will depend in part on the tumor lethality. The second
complication is that because of the extremely high dos-
ages of the test compounds, the longevity ofthe exposed
animals is often affected. Consequently, tumors might
appear to occur earlier in the exposed group simply
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because death occurs sooner, or might not appear at all
because the animals died before the tumor could de-
velop.
Because of these complexities, the comparison of con-

trol and exposed groups based on the proportions of
animals that eventually develop tumors can be mislead-
ing. Although it is now widely recognized that compar-
isons between the control and exposed groups should
account for age at death, there is no single appropriate
method of incorporating age. We shall see that appro-
priate methods exist when the tumor type in question
is nonlethal, when it is instantly lethal, when there are
serial sacrifices, or when pathologists determine
whether or not the detected tumors caused death.

This paper reviews these methods and discusses their
advantages and shortcomings.

General Formulation
Figure 1 gives a simple representation of the life of

an animal in a tumorigenicity experiment. Animals be-
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FIGURE 1. General model.
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gin in a tumor-free state and then either develop the
tumor or die tumor-free. By "tumor onset" we mean
the earliest age at which the tumor would be detectable
by a microscopic examination of the involved organ or
tissue. Animals that develop the tumor eventually die
with the tumor present.
Suppose U1 denotes the age at (time to) the first of

tumor onset or death, a(t) indicates whether [a(t) = 1]
or not [a(t) = 0] the tumor has occurred by age t, and
U denotes age at (time to) death. Probabilistically, the
model can be characterized by the intensity functions
a(t), 1(t), and b(t,x), where

a(t) = lim (At)-fPr{t < U1 < t + At,
At-.*O

a(Ul)=1 U1-t}
1(t) = lim(At)lPr{t z U1 < t + At,

A&t-].O

a(Ul) = 0 U1 - t}

and

b(t,x) = lim(At)1Pr{t S U < t + At I U > t,

U1 = X}

The first of these functions, a(t), specifies the risk of
tumor onset and is the quantity of primary interest in
the comparison of the control and exposed groups. The
function ,8(t) describes the risk of death without tumor.
In many experiments, this risk is affected by the high
doses of compound that are given to the rodents; con-
sequently, differences between the control and exposed
groups with respect to the function 1(t) are not regarded
as evidence oftumorigenicity. The function 8(t,x), which
describes the death risk with tumor, is also a nuisance
function, because it also may depend upon the toxicity
of the chemical being tested. The statistical problem is
to test the equality of the functions a(t) in the control
and exposed groups in the presence of the nuisance
functions 13(t) and b(t,x).
A function which is often considered to be a measure

of carcinogenicity is the tumor prevalence rate, or the
probability that an animal living at age t has developed
the tumor; that is,

The observable data for each animal consist of U, the
age at death, and the binary variable a = a(U), which
indicates whether (a = 1) or not (a = 0) the tumor has
developed by the time of death. The only estimable
aspects of the model depicted in Figure 1 are those
functions that can be expressed in terms of the distri-
bution of the observed random variables (U,a). The lat-
ter are characterized (1) by the cause-specific hazard
functions

hl(t) = lim(W)- Pr-t* U<t + At,a = 1 UOt}
I&t-IO

and

ho(t) = lim(At)-Pr{t-U< t+ At, a = 0UB t}
A&t 0*

It can be verified that

h1(t) = fg(t,x) 8(t,x)dx/{1 + fg(t,x)dx}

and

ho(t) = 13(t)/{1 + fg(t,x)dx}

The fundamental difficulty in the analysis of carcino-
genicity experiments is that none of oa(t), 1(t), or b(t,x)
can be expressed solely in terms of h1(t) or ho(t). Thus,
without further assumptions, these three basic model
parameters are nonidentifiable when the data consist
only of U and a. Furthermore, since ho(t) and h1(t) de-
pend on the nuisance functions ,B(t) and 8(t,x), neither
is appropriate as a basisfor determining tumorigenicity.
The rest of the paper will discuss proposed methods for
overcoming this nonidentifiability problem.

Two Special Cases: Instantly Lethal
and Nonlethal Tumor Types

,Tr(t) = Pr{ a(t) = 1 U - t } (1)

In terms of Figure 1, the prevalence function can be
expressed as

rtft
*0t = lg(t,x)dxlfl + lg(t,x)dxl (2)

where

exp {ot[a(u) + 1(u) - 8(u,x)]du}

Instantly Lethal Tumor Types
For two special cases of the general model, appro-

priate analyses of a(t) are possible. The first of these is
when the tumor type under consideration is instantly
lethal; i.e., death follows instantaneously after tumor
onset. For example, leukemias and reticulum cell sar-
comas are considered to be virtually instantly lethal.
For such tumors, the process in Figure 1 is character-
ized solely by the functions a(t) and 1(t), and simplifies
to one where an animal begins tumor free and then
either develops a tumor (and dies instantly), or dies
without a tumor. The standard competing-risks frame-
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work can be used to describe this process by taking

U = min(Tl, Y)

and

1 if T1 - Y
a to if T1 > Y

where T1 and Y are random variables representing the
potential times to tumor onset and death without tumor,
respectively. These are imagined to "compete" with one

another to determine when and how death occurs.
Analyses of competing-risk data are well-documented

in the statistical literature (2). For example, the cu-

mulative intensity function

A(t) = f a(u)du

Controls

Exposed

Total

m M-m

n N-n

(m + n)

M

N

(M + N)

FIGURE 2. Construction of logrank and Hoel-Walburg tests. Note:
for logrank test, M and N denote number of animals that survive
until at least age t. For Hoel-Walburg test, M and N denote num-
ber of animals that die at age t. Both test statistics are of the
fonn: T = V(O, - E,)/(I.V,), where O = n, Et = N(m + n)/(M
+ N), and Vt = MN (m + n)(M + N - m - n)/[(M + N)2 (M
+ N - 1)].

can be consistently estimated by

I n(t)IN(t)

where n(t) is the number of tumor deaths at age t and
N(t) is the number of animals alive at age t - 0.

Perhaps the most common test of equality of groups
with respect to the functions a(t) is the logrank test.
This test arises as the partial likelihood score test of 0

= 0 in the proportional hazards model where

aE(t) = exp(O) ac(t)

and the subscripts denote the exposed and control
groups, respectively. The construction of the test is
described in Figure 2. Essentially, the control and ex-

posed groups are compared at each age of death where
there is a tumor, and the observed and expected number
of tumor deaths in the exposed group are summed over
these death times. The test is valid regardless of
whether or not aE(t) is proportional to ac(t), but is most
efficient when proportionality holds. Other so-called "li-
fetable" tests are designed to be most sensitive to al-
ternatives other than proportionality. When the tumor
type is not instantly lethal, the noncentrality parameter
of the logrank and related tests are distorted in a di-
rection that depends on the functions PE(t) and Pc(t)
(3). In particular, when the risk of death from nontumor
causes is greater in the exposed group, the resulting
significance levels tend to be too small. That is, when
applied to tumors which are not instantly lethal, the
logrank test is invalid and tends to reject the null hy-
pothesis too frequently.

Nonlethal Tumor Types
Fornally, a nonlethal tumor type is one for which

8(t,x) = 1(t) for all t and x; that is, a tumor type for

which tumor onset does not alter the risk of death. The
identifiable functions hl(t) and ho(t) simplify to

h1(t) = ,B(t) rr(t)
and

ho(t) = ,B(t) { 1 - rr(t)}

and the prevalence function becomes

ir(t) = 1 - exp{-f a(u)du}

Thus, both a(t) and 1(t) (and ff) are identifiable.
Nonlethal tumor types can also be represented by a

special competing risks framework, with

U = y

and

1 if T1>Y
a l if T, > Y

where the independent random variables T1 and Y rep-
resent the potential time to tumor onset and the time
to death, respectively. Note that T1 is either right cen-
sored (when a = 0) or left censored (when a = 1); it is
never directly observed. Also, rr(t) can be thought of as
the c.d.f. of T1, with corresponding hazard function a(t).
This representation shows that the problem of esti-
mating nT(t) [or, equivalently a(t)] corresponds to the
so-called binomial extremum problem (4); i.e., let t1 <
t2< . . . denote the distinct ages of death, let Nj be the
number of deaths at age tj, and let nj be the number of

Data at Age t

Dead
with
tumor

Number
at risk
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these with a tumor. Then, conditional on N1, N2, . . ..
nl, n2, ... are independently binomial with probabilities
*ntj) that are ordered. It can be shown (4,5) that the
constrained maximum likelihood estimator of the set of
iij is also the solution to the constrained weighted least-
squares criterion

X N {rr (tj) - nj/Nj}

and given by the isotonic regression of the naive esti-
mators n/N with weights Nj.

It can be verified that

Tr(t) = Pr{ a(U) = 1 U = t } (3)

which indicates that animals dying at age t are repre-
sentative (6), with respect to tumor presence, of all
animals surviving until at least age t. It follows that a
test for differences between rrE(t) and rc(t) can be ob-
tained by comparing the control and exposed groups
with respect to the proportions of tumors found in an-
imals dying at age t. The first such "prevalence" test
was proposed by Hoel and Walburg (7) and has the same
form as the logrank test, except that the numbers of
animals "at risk" at age t are defined differently (see
Fig. 2).

It can be shown (8) that the Hoel-Walburg test arises
as the likelihood score test of 0 = 0 from the logistic
model where

logitQrE(t)} = 0 + 1ogit{*1(t)}

that is, where the two groups have proportional prev-
alence-odds functions. Thus, the Hoel-Walburg test is
most efficient when the two prevalence functions have
proportional odds, but remains valid when they are not
proportional. Analogous to logrank tests, prevalence
tests are distorted when applies to tumor types that
are not nonlethal (6). Other types of prevalence tests
have been recently investigated by McKnight and
Crowley (9) and Finkelstein (10).

Use of Serial Sacrifices
For the special cases of the preceding section, prob-

lems of nonidentifiability of model parameters were
avoided by assuming that the tumor type either is in-
stantly lethal or that it is nonlethal. However, most
types of tumors are somewhere between these two ex-
tremes. One approach to achieving identifiability for
these intermediate tumor types utilizes serial sacrific-
ing; that is, the random selection, killing, and exami-
nation of live animals at various ages. From Eq. (1),
the proportion of animals sacrificed at age t that are
found to have a tumor estimates 7r(t), the tumor prev-
alence at age t. Thus, with serial sacrificing the iden-
tifiable aspects of the process depicted in Figure 1 are
those expressible in terms of hl(t), ho(t), and rr(t). It

Tumor free a(t) > Tumor

1(t) /y(t,x)
X(t,x)

Death from Death from
other causes tumor

FIGURE 3. Modified model incorporating cause of death.

follows that 13(t) is identifiable since we can write

13(t) = ho(t)/[ 1 - rr(t) ]

It can also be shown that the function oa(t) is identifiable,
though a simple functional form such as that for ,B(t) is
not obtainable.
Although serial sacrificing can in theory overcome

nonidentifiability problems, the methods (9,11-14)
which use this information require very large amounts
of data. For this reason, experiments with extensive
sacrificing, other than at the termination of an experi-
ment, are quite rare.

Use of Cause of Death Information
An alternative to using sacrifice data for estimating

and testing time to tumor onset becomes available when
each animal found to have a tumor at death is further
classified as having died from that tumor or from non-
tumor causes (see Figure 3). The observable "data" are
(U,a,b), where the binary indicator variable b equals
one for deaths due to the tumor and zero otherwise.
This amounts to decomposing the intensity function
5(t,x) in Figure 1 into the sum -y(t,x) + X(t,x), where

-y(t,x) = lim (At)f-'Pr{t S U < t + At,
At-30

b =1 U - t, a = 1, U1 = x}

and

A(t,x) = lim (At)f-1Pr{t - U < t + At,
At-.O

b = U t,a = 1, U1 = x}

If a tumor develops at time x, y(t,x) and X(t,x) represent
the risks of dying from the tumor and from other causes,
respectively, at time t.
Suppose we assume that X(t,x) = 13(t) for all t and x;

that is, that the risk of death from nontumor causes is
unaltered by tumor onset. Given this assumption and
the data (U,a,b), the identifiable components of the
model are the functions a(t), ,B(t), and wr(t). The iden-
tifiability of r(t) follows because it can be verified that
under the above assumption
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7r(t) = Pr{ a = 1 U = t, b = 0 }

Note also from Eq. (2) that the prevalence depends only
of a(t) and -y(t,x). Thus, the assumption that X(t,x) =
,B (t) essentially ensures that nontumor deaths act like
sacrifices from the simpler model where the animal de-
velops a tumor and at some later age dies. The only
difference is that now the ages of death are not deter-
mined by the experimenter. Several methods for esti-
mating these functions have been investigated (15-18).
A method of comparing the control and exposed

groups for this model was proposed by Peto (3,9,15,19).
The procedure consists essentially of applying of both
the logrank and Hoel-Walburg tests to subsets of the
data. Specifically, one first ignores all animals where
death was due to the tumor, and applies a Hoel-Walburg
test to the remainder. Next, one uses all the observa-
tions, treating deaths from the tumor as "uncensored"
events, and all other deaths as "censored," and applies
a logrank test. It can be shown that the former tests
the equality of the control and exposed groups with
respect to the tumor prevalence function wr(t), and the
latter compares them with respect to the function

rt rt

h*(t) = fg(t,x) y(t,x)dx/{1 + fg(t,x)dx}

An overall test for differences between a(t) or y(t,x) in
the control and exposed groups is obtained by combining
the p-values from the two procedures.

Unlike the earlier tests that were discussed, Peto's
approach requires no assumptions about tumor lethal-
ity, but instead requires accurate assignment of cause
of death and assumes that (t) = A(t,x). We carried out
an empirical study (6) of the recently completed EDO,
experiment and found these assumptions to be violated
in various degrees for several tumor types. Some an-
alytic results suggest however, that the effects of such
violations on the testing problem will be less severe than
the distortions caused to estimates of prevalence. We
feel that a better understanding of the way in which
pathologists define cause of death can lead to improve-
ments in the analysis of carcinogenicity experiments.

Defining Cause of Death to Avoid
Distortion
Death is an end result ofmany complex events. While

it may sometimes be evident that the tumor type in
question contributed to death, the definition of cause of
death is necessarily somewhat arbitrary. Recall that
any rule for assigning cause of death defines a particular
model of the form in Figure 3, where the hazard 8 is
divided into two components:

b(t,x) = A(t,x) + -y(tx,)

As discussed in the previous section, the two-step Peto
method is valid when ,B(t) = X(t,x) and cause of death is
accurately classified. Consideration of the observed vi-
olations of these assumptions in the EDO, data raises
the possibility that statisticians work with pathologists
to redefine the notion of "cause-of-death" (perhaps a
different phrase ought to be used) so that the condition
,B(t) = X(t,x) holds, regardless of whether the resulting
definition has complete biologic meaning in terms of
actual causation. If this could be done, we would be
assured that exposed and control groups could be ac-
curately compared with respect to 0(t) and h*(t). It
remains to be seen whether an effective modification of
the conventional notion of cause of death can be found.

Another approach, which we have begun to explore,
is to move away from the notion of cause of death al-
together, and to incorporate information on the ana-
tomic stage of the tumor. This approach has the poten-
tial to simplify the task of pathologists and to solve the
nonidentifiability problem without the need for restric-
tive assumptions.

We wish to thank Nicholas Lange and Thomas Louis for helpful
discussions. This research was supported in part by grant CA-33041
from the National Institutes of Health.
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